
STABILITY OF THE AIR CONVECTION IN A TWO-LAYER
COVER OF SNOW. II. CALCULATION OF THE CRITICAL
PARAMETERS OF THE MAIN AIR-STABILITY LEVEL

M. K. Zhekamukhov and I. M. Zhekamukhova UDC 532.5

The critical Rayleigh numbers determining the boundaries of the air stability in a two-layer cover of snow
were calculated by the Galerkin method. Different regimes of air convection in the snow cover were ana-
lyzed depending on the relation between the heat-conductivity, penetrability, and porosity coefficients of the
snow layers.

In [1], the spectral problem (27)–(35) on determination of the critical parameters of a snow cover consisting
of two layers with different thermophysical and structural parameters, at which the air contained in the snow pores be-
comes unstable and begins to execute a thermal convective motion, was formulated. This spectral problem has nontriv-
ial solutions at a large number of equilibrium-perturbation decrements. For a snow cover, we can restrict ourself to the
case where λ has the smallest value corresponding to the main air-instability level: small equilibrium perturbations cor-
responding to large values of λ decay rapidly and practically do not manifest themselves in a snow cover under actual
conditions. It is impossible to determine the exact value of the decrement λ corresponding to the main air-instability
level. In the present work, we determined an approximate value of λ by the Galerkin method. In accordance with this
method, the amplitude functions V(z) and Θ(z) of problem (27)–(35) are defined as

V (z) = aϕ (z) ,   Θ (z) = bψ (z) ,

where ϕ(z) and ψ(z) are the basis functions satisfying the boundary conditions of the indicated problem. We consid-
ered the case where the outer surface of a snow cover is penetrable and the case where this surface is impenetrable
for the air contained in the snow pores.

1. Surface of a Snow Cover is Penetrable. In the case where the surface of a snow cover is penetrable, the
amplitude values of the dimensionless velocity of the air satisfy the boundary conditions

V1 (0) = 0 ,   V2
 ′ (1) = 0 .

In the simplest case, the functions ϕ(z) and ψ(z) have the form
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f2σ2
 and C = 


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
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. The functions ϕ(z) and ψ(z) satisfy the boundary conditions (32)–(35) for-

mulated in [1].
Substituting V(z) and Θ(z) into the system of amplitude equations (27)–(30) obtained in [1] and taking into

account the equality
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where q = 
λ1

λ2
, R1 = 

βgf1H2M1σ1γ10

νχ1
 and R2 = 

βgf2H2M1σ1γ10

νχ1
.

Upon multiplying Eqs. (1) and (2) by ϕ(z) and integrating them over ϕ(z) from 0 to 1, we obtain
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Here, Ra = R1a3 + AR2a4 is the Rayleigh number for a two-layer snow cover;
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In the same manner, multiplying Eq. (4) by ψ(z) and integrating it with respect to this quantity, we obtain the equality
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where Pr = Pr1b3 + Pr2b4 is the Prandtl number for a two-layer snow cover;
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The integrals were calculated using the formula

sin α sin β sin γ = 
1
4

 [sin (α + β − γ) + sin (β + γ − α) + sin (γ + α − β) − sin (α + β + γ)] .

Thus, for the coefficients a and b we obtained the system of homogeneous equations (5) and (6). The eigen-
values of λ were determined on the condition that there is a nontrivial solution of this system. Equating the determi-
nant of the indicated system to zero, we obtain a quadratic equation with respect to λ. Its roots represent decrements
dependent on the Rayleigh number, Prandtl number, and the wave number.

The determinant of the system of equations (5)–(6) has the form
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Equating this determinant to zero gives the equation
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The roots of Eq. (7) are equal to
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The coefficients A1 and B1 for a snow cover are always positive because the Prandtl number Pr is large and,
at B1

2 − 4A1C1 > 0, the second root λ(−) < 0. Consequently, the perturbations corresponding to λ(−) increase with time
and lead to the appearance of an air-convection instability. At small Rayleigh numbers Ra, the coefficient C1 becomes
negative, the first root λ(+) > 0, and the perturbations corresponding to λ(+) decay. The critical Rayleigh number is de-
termined on condition that λ = 0; in this case, C1 = 0.

Thus, for a two-layer snow cover as well as for a homogeneous plane snow layer, the stability boundary is
determined on condition that λ = 0.

The Rayleigh number is determined on condition that the coefficient C1 is equal to zero:
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Expression (8) defines a neutral curve in the plane (Ra, k) separating the stability and instability regions. The mini-

mum of the neutral curve is determined from the condition 
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 = 0, which leads to the equation
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Taking into account the fact that the terms containing k2 cancel each other, we obtain that
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 and km is the minimum value of the wave number corresponding to the main air-

instability level. If, in formula (8), k is changed to by km, this formula will give the critical Rayleigh number at which

the air contained in the snow pores becomes unstable.
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In the case where h1 → 0, i.e., when a snow cover is homogeneous, the coefficients a1, a3, b1, and C are

equal to zero, a2 = b5 = 
1
2

, and a4 = b2 = 
4

3π
. In this case, the wave number km = 

π
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 = 2.22 and (8) is rearranged

into the formula determining the critical Rayleigh number for a homogeneous plane snow layer Ra0:
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These results were obtained in the first approximation of the Galerkin method, in which the velocity and temperature
approximations each include only one basis function. Comparison of the data obtained with the more exact values of
km = 2.3 and Ra0 = 27.1, presented in [2], shows that the accuracy of the calculations performed can be considered
as satisfactory.

2. Surface of a Snow Cover is Impenetrable. In the case where the surface of a snow cover is impenetrable,
V1(0) = 0, V2(0) = 0, and the basis functions have the form
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In this case, instead of Eqs. (1)–(4), we have the equations
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As in the previous case, multiplying Eqs. (10) and (11) by ϕ(z) and Eqs. (11) and (12) by ψ(z) and integrat-
ing them over these quantities from 0 to 1, we obtain the equations
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_
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Equating the determinant of system (14), (15) to zero, we obtain a quadratic equation with respect to λ, from which
the quantity (k

_
m = πq) can be determined:
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


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 . (16)

At h1 = 0 and h1 = H, from (16) the known results for a horizontal plane layer of a porous medium follow [2]:

k
_

m = π ,   Ra
___

m = Ra
___

0 = 4π2
 .

Let us represent the critical Rayleigh number in the form

Ram = R1 


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R2
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 = Ra1 

H
2
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 a4


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 ,

where Ra1 = 
βgf1M1σ1γ10h1

2

χ1ν
 is the Rayleigh number for the lower layer. It follows herefrom that

Ra1 = 
h1

2

H
2
 

Ram

a3 + 
σ1

σ2
 a4

 .
(17)

In the same manner, we obtain the formula

Ra2 = 
λ1

2

λ2
2 
σ2

σ1

 
f2

f1
 
h2

2

H
2 

Ram

a3 + 
σ1

σ2
 a4

 , (18)

in which Ram = 
βgf2M2σ2γ20h2

2

νχ2
 is the Rayleigh number for the upper layer. Note that the critical Rayleigh number for

a two-layer snow cover is smaller than the critical Rayleigh number for the individual layers. Formulas (17) and (18)
give the following limiting values of the numbers Ra1 and Ra2:

at   h1 = 0     Ra1 = 0   and   Ra2 = 3π Ra0 ,

at   h1 = H   (h2 = 0)     Ra1 = 3π Ra0   and   Ra2 = 0 .
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It is seen from the above-presented formulas that the critical values of km and Ram of the main air-instability
level are determined by the ratios between the porosity, heat-conductivity, and penetrability coefficients of the lower
and upper layers of a snow cover as well as by the ratios between the thicknesses of these layers.

The porosity coefficient is related to the snow density by the simple relation

f = 1 − 
ρs

ρi
 , (19)

and the penetrability coefficient of the snow can be calculated by one of the empirical formulas, e.g., by the Kozeni
formula [2]

σ = 
f
 3

150 (1 − f )2
 d

2
. (20)

The heat-conductivity coefficient of the snow can be calculated by the empirical formula [3]

log λs = − 4.04 + 2.25⋅10
−10ρs . (21)

Table 1 presents the ratios between the heat-conductivity, penetrability, and porosity coefficients of the lower
and upper layers of the snow cover, calculated by formulas (19)–(21) at ρs1 = 350 kg/m3 and ρs2 = 250 kg/m3 as well
as the critical values of the wave numbers and the Rayleigh numbers Ram, Ra1, and Ra2 at different ratios between
the thicknesses of the snow cover. The values of km and Ram presented in the upper row were obtained for the pene-
trable surface and the values of these quantities presented in the lower row were obtained for the impenetrable surface
of the snow cover. Comparison of these data shows that a "strengthening" of the boundary condition for the air veloc-
ity leads to a larger increase in the critical value of Ram as compared to that of a homogeneous plane snow layer and
to a decrease in the critical wavelength.

Figure 1 shows the dependences of Ram, Ra1, and Ra2 on the dimensionless coordinate z. The quantities z =
z1 and z = z2 are roots of the equations Ra1 = Ra0 and Ra2 = Ra0, where Ra1 and Ra2 are determined from formulas
(17) and (18). It is seen that, in the region between z = 0 and z = z1, the Rayleigh number Ra2 > Ra0 and
Ra1 < Ra0, i.e., at z < z1 an air convection arises in the upper snow layer and causes the exhaustion of air from the
lower snow layer, with the result that the air becomes unstable.

In the region between z = z2 and z = 1, Ra1 > Ra0 and Ra2 < Ra0. Here, a convection arises initially in the
more dense lower snow layer. This convection breaks down the less dense upper snow layer and gives rise to a con-
vective air motion in it.

In the region between z = z1 and z = z2, both Rayleigh numbers Ra1 and Ra2 are smaller than the critical
value of Ra0 for a plane homogeneous layer. This means that, in this region, an air convection cannot arise in indi-
vidual snow layers at temperature gradients γ10 and γ20 and, therefore, the air in the snow pores is in the stable state.
However, when snow layers are combined in a two-layer snow cover, the air contained in the snow pores begins to
execute a convective motion.

TABLE 1. Critical Values of the Parameters of a Two-Layer Snow Cover at ρs1 = 350 kg/m3, ρs2 = 250 kg/m3, λ1 ⁄ λ2 = 1.7,
σ1 ⁄ σ2 = 0.78, and f1 ⁄ f2 = 0.84

h1
 ⁄ H C ξ km Ram Ra1 Ra2 Ra0

0.33 0.2367 0.95
2.11 8.8 2.5 52.38 31.5
2.98 16.5 4 83.80 39.5

0.5 0 1
2.22 10.35 7.14 37.4 31.5
3.14 24.14 13.56 71.03 39.5

0.67 –0.2367 0.94
2.09 15.62 18.4 24.1 31.5
2.95 26.5 24.72 32.4 39.5
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Thus, at a fairly large temperature gradient in a snow cover consisting of two or more layers, various regimes
of air convection can be realized depending on the ratio between the thicknesses of the snow layers. Convective mo-
tions arising in individual layers can give rise to an air convection in the other layers. Under certain conditions, an air
convection can arise in a multilayer snow cover even in the case where air convection is impossible in an individual
layer at the same temperature gradient.

The above-described features of the air convection in a snow cover consisting of several layers explain, in
many respects, the physical mechanism of the metamorphism and formation of a grain snow structure in individual
layers of a snow cover.

NOTATION

d, diameter of balls equivalent in volume to the snow crystals, cm; f, penetrability coefficient of the snow;
f1 and f2, porosity coefficients of the lower and upper snow layers; g, free fall acceleration, m/sec2; H, total thickness
of a snow cover, m; h1 and h2, thickness of the lower and upper snow layers, m; k, wave number, m−1; km, minimum
critical wave number; Pr, Pr1, and Pr2, Prandtl numbers; Ra, Ra1, and Ra2, Rayleigh numbers for a two-layer snow
cover, the lower snow layer, and the upper show layer; Ra0, Rayleigh number for a homogeneous plane snow layer;
Ram, critical Rayleigh number for a two-layer snow cover; V(z), dimensionless amplitude of the air-velocity perturba-
tion; z, dimensionless vertical coordinate; β, thermal-expansion coefficient of the air, deg−1; γ10, γ20, equilibrium tem-
perature gradients in the snow layers, deg/m; Θ(z), dimensionless amplitude of the air-temperature perturbation; χ1,
χ2, thermal diffusivity coefficients of the snow, m2/sec; λ, decrement, sec−1; λ1 and λ2, heat-conductivity coefficients
of the lower and upper snow layers, J/(m⋅sec⋅deg); λs, heat-conductivity coefficient of the snow, J/(m⋅sec⋅deg); ν, ki-
nematic viscosity of the air, m2/sec; ρi, density of the ice, kg/m3; ρs, density of the snow, kg/m3; ρs1, ρs2, density of
the snow layers, kg/m3; σ, σ1, and σ2, penetrability coefficients of the snow, m2; ξ, dimensionless parameter. Sub-
scripts: s, snow; i, ice; m, minimum.
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Fig. 1. Dependence of the Rayleigh numbers Ra, Ra1, and Ra2 on the dimen-
sionless coordinate  z = h1

 ⁄ H.
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