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STABILITY OF THE AIR CONVECTION IN A TWO-LAYER
COVER OF SNOW. II. CALCULATION OF THE CRITICAL
PARAMETERS OF THE MAIN AIR-STABILITY LEVEL

M. K. Zhekamukhov and 1. M. Zhekamukhova UDC 532.5

The critical Rayleigh numbers determining the boundaries of the air stability in a two-layer cover of snow
were calculated by the Galerkin method. Different regimes of air convection in the snow cover were ana-
lyzed depending on the relation between the heat-conductivity, penetrability, and porosity coefficients of the
snow layers.

In [1], the spectral problem (27)—(35) on determination of the critical parameters of a snow cover consisting
of two layers with different thermophysical and structural parameters, at which the air contained in the snow pores be-
comes unstable and begins to execute a thermal convective motion, was formulated. This spectral problem has nontriv-
ial solutions at a large number of equilibrium-perturbation decrements. For a snow cover, we can restrict ourself to the
case where A has the smallest value corresponding to the main air-instability level: small equilibrium perturbations cor-
responding to large values of A decay rapidly and practically do not manifest themselves in a snow cover under actual
conditions. It is impossible to determine the exact value of the decrement A corresponding to the main air-instability
level. In the present work, we determined an approximate value of A by the Galerkin method. In accordance with this
method, the amplitude functions V(z) and ©(z) of problem (27)—(35) are defined as

V@=a0 (@), ©@)=>by(2),

where ¢©(z) and y(z) are the basis functions satisfying the boundary conditions of the indicated problem. We consid-
ered the case where the outer surface of a snow cover is penetrable and the case where this surface is impenetrable
for the air contained in the snow pores.

1. Surface of a Snow Cover is Penetrable. In the case where the surface of a snow cover is penetrable, the
amplitude values of the dimensionless velocity of the air satisfy the boundary conditions

V,(0)=0, V,(1)=0.

In the simplest case, the functions @(z) and Y(z) have the form
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where A = f_ and C =1 _l_ cot - The functions @(z) and y(z) satisfy the boundary conditions (32)-(35) for-
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mulated in [1].
Substituting V(z) and ©O(z) into the system of amplitude equations (27)—(30) obtained in [I] and taking into
account the equality
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Upon multiplying Egs. (1) and (2) by ¢(z) and integrating them over @(z) from O to 1, we obtain
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Here, Ra = Rjaz + ARyay is the Rayleigh number for a two-layer snow cover;
h/H

omz o 1(hy 1w
a; = j Sin 7dZ=§ ——;sm— 5
0

1
iz 1 h 1 Th
a,= j sinz—dz=—[l ——1+—sin—1];

2 2 H 1 H
h/H
h/H
J- ) ) nzd (. wmhy 1 3¢k
a3—osmTczsm2 Z_n s1nH—3sm " |

1

J . L hy J
a4— sin 7tZ SIn 2 + SINTT Z_H =
hy/H

_l(i_.n_hl_l_%thl) 4 [1,71/11 1wk 3 3nh1J

— SIn —7; + = COS = — 7~ COS

5 H 2 2H 10 2H

121



In the same manner, multiplying Eq. (4) by y(z) and integrating it with respect to this quantity, we obtain the equality
2 2 2 2
(by +Aby)a+ |:k Pr - (n +k )(b3 +gbs) +qC (27: bg—k b7):|-b =0, (6)

where Pr = Prib3+ Proby is the Prandtl number for a two-layer snow cover;
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The integrals were calculated using the formula
sinocsinBsiny=%[sin (0+PB =7 +sin (B+7y—0) +sin (y+o—P) —sin (0t + B +7)] .
Thus, for the coefficients a and b we obtained the system of homogeneous equations (5) and (6). The eigen-
values of A were determined on the condition that there is a nontrivial solution of this system. Equating the determi-

nant of the indicated system to zero, we obtain a quadratic equation with respect to A. Its roots represent decrements

dependent on the Rayleigh number, Prandtl number, and the wave number.
The determinant of the system of equations (5)—(6) has the form
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Equating this determinant to zero gives the equation

AN +BA+C =0, (7)

2
A= (TCZ + sz(al +A2a2)Pr ;

B, = {n_ + kz} kal + Z—;Azaz} Pr— ( }{al + G_zA az][(ﬁ + kz) (b3 +gbs) + Cq (27T2b6 - k2b7)] ;

where

C = R (b +Aby) - [TZZ + kz}k a + z—zA az}[(nz + kz) (bs+gbs) + Cq (2752[96 - k2b7):| .

The roots of Eq. (7) are equal to

—B, =B -4A,C,

Ma= 24,

The coefficients A and B for a snow cover are always positive because the Prandtl number Pr is large and,
at B%—4A1C1 >0, the second root 2O <o. Consequently, the perturbations corresponding to A7) increase with time
and lead to the appearance of an air-convection instability. At small Rayleigh numbers Ra, the coefficient C; becomes
negative, the first root A®M > 0, and the perturbations corresponding to A® decay. The critical Rayleigh number is de-
termined on condition that A = 0; in this case, C; = 0.

Thus, for a two-layer snow cover as well as for a homogeneous plane snow layer, the stability boundary is
determined on condition that A = 0.

The Rayleigh number is determined on condition that the coefficient C; is equal to zero:

i o (2 ]
L T [ - T )|

Ra= 3
k™ (by +Ab,)
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Expression (8) defines a neutral curve in the plane (Ra, k) separating the stability and instability regions. The mini-

. . .. dRa . .
mum of the neutral curve is determined from the condition e = 0, which leads to the equation
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Taking into account the fact that the terms containing k* cancel each other, we obtain that

1/4
M
b3 + —(bs + 2Cb6)
%

where & = n and k;, is the minimum value of the wave number corresponding to the main air-
by +—X(bs — 2Cby
A

instability level. If, in formula (8), k is changed to by ky,, this formula will give the critical Rayleigh number at which
the air contained in the snow pores becomes unstable.
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In the case where h; — 0, i.e., when a snow cover is homogeneous, the coefficients a;, az, by, and C are

equal to zero, ay = b5 = >

into the formula determining the critical Rayleigh number for a homogeneous plane snow layer Ray:
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and a4 = by = 3i In this case, the wave number &, = % = 2.22 and (8) is rearranged
T

~315.

These results were obtained in the first approximation of the Galerkin method, in which the velocity and temperature
approximations each include only one basis function. Comparison of the data obtained with the more exact values of
kyn = 2.3 and Ray = 27.1, presented in [2], shows that the accuracy of the calculations performed can be considered
as satisfactory.

2. Surface of a Snow Cover is Impenetrable. In the case where the surface of a snow cover is impenetrable,
V1(0) = 0, V5(0) = 0, and the basis functions have the form
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In this case, instead of Egs. (1)-(4), we have the equations
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As in the previous case, multiplying Eqgs. (10) and (11) by ¢(z) and Egs. (11) and (12) by w(z) and integrat-
ing them over these quantities from O to 1, we obtain the equations
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where
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Equating the determinant of system (14), (15) to zero, we obtain a quadratic equation with respect to A, from which
the quantity (k,, = mg) can be determined:
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At hy = 0 and h; = H, from (16) the known results for a horizontal plane layer of a porous medium follow [2]:

k,=7. Ra,=Ray=4r".

Let us represent the critical Rayleigh number in the form

Rz H2 (O]
Ra,=R;|a;+A—ay =Ral—2 az+—ay |,
R, ) h k O, )
2
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where Ra; = is the Rayleigh number for the lower layer. It follows herefrom that
X
h% Ra_ a7
i az+ % a
3 o, 4
In the same manner, we obtain the formula
A Oy /o h R
Razz_l_zé_z;am, (18)
Ao f H O
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in which Ra,, = ———————— is the Rayleigh number for the upper layer. Note that the critical Rayleigh number for
VX2

a two-layer snow cover is smaller than the critical Rayleigh number for the individual layers. Formulas (17) and (18)
give the following limiting values of the numbers Ra; and Ray:

at hy=0 Ra;=0 and Ra,=3mRa,,

at hy=H (h,=0) Ra;=3mRa; and Ra,=0.
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TABLE 1. Critical Values of the Parameters of a Two-Layer Snow Cover at ps1 = 350 kg/m3, ps2 =250 kg/m3, M/ =117,
o61/02=0.78, and f1/f> = 0.84

hy/H C & km Ra,, Ra; Ra; Ragy
2.11 8.8 2.5 52.38 31.5

0.33 0.2367 0.95 2.98 16.5 4 83.80 39.5
05 0 1 222 10.35 7.14 374 31.5
' 3.14 24.14 13.56 71.03 39.5
2.09 15.62 184 24.1 31.5

0.67 ~0.2367 0-94 2.95 26.5 24.72 324 39.5

It is seen from the above-presented formulas that the critical values of &, and Ra,, of the main air-instability
level are determined by the ratios between the porosity, heat-conductivity, and penetrability coefficients of the lower
and upper layers of a snow cover as well as by the ratios between the thicknesses of these layers.

The porosity coefficient is related to the snow density by the simple relation

f=1-Ps (19)

Pi

and the penetrability coefficient of the snow can be calculated by one of the empirical formulas, e.g., by the Kozeni
formula [2]

3

o=—I & (20)
150 (1 - f)

The heat-conductivity coefficient of the snow can be calculated by the empirical formula [3]
—10
log A,=—4.04+2.25-10 p,. 21)

Table 1 presents the ratios between the heat-conductivity, penetrability, and porosity coefficients of the lower
and upper layers of the snow cover, calculated by formulas (19)—(21) at pg; = 350 kg/m3 and pg = 250 kg/m3 as well
as the critical values of the wave numbers and the Rayleigh numbers Ra,,, Raj, and Raj at different ratios between
the thicknesses of the snow cover. The values of k, and Ra,, presented in the upper row were obtained for the pene-
trable surface and the values of these quantities presented in the lower row were obtained for the impenetrable surface
of the snow cover. Comparison of these data shows that a "strengthening" of the boundary condition for the air veloc-
ity leads to a larger increase in the critical value of Ra,, as compared to that of a homogeneous plane snow layer and
to a decrease in the critical wavelength.

Figure 1 shows the dependences of Ra,,, Raj, and Rap on the dimensionless coordinate z. The quantities z =
71 and z = 7o are roots of the equations Ra; = Ray and Ra, = Ray, where Ra; and Raj are determined from formulas
(I7) and (18). It is seen that, in the region between z = 0 and z = zj, the Rayleigh number Ra; > Rajy and
Raj <Rayg, i.e., at z<zj an air convection arises in the upper snow layer and causes the exhaustion of air from the
lower snow layer, with the result that the air becomes unstable.

In the region between z = zp and z = 1, Ra; > Rap and Ra, <Ray. Here, a convection arises initially in the
more dense lower snow layer. This convection breaks down the less dense upper snow layer and gives rise to a con-
vective air motion in it.

In the region between z = z; and z = zp, both Rayleigh numbers Ra; and Ra, are smaller than the critical
value of Ray for a plane homogeneous layer. This means that, in this region, an air convection cannot arise in indi-
vidual snow layers at temperature gradients Yo and Y, and, therefore, the air in the snow pores is in the stable state.
However, when snow layers are combined in a two-layer snow cover, the air contained in the snow pores begins to
execute a convective motion.

126



Ram

10 —

l .
>

0 0.5 2 Z 1.0 =z

Fig. 1. Dependence of the Rayleigh numbers Ra, Ra;, and Ray on the dimen-
sionless coordinate z = hi/H.

Thus, at a fairly large temperature gradient in a snow cover consisting of two or more layers, various regimes
of air convection can be realized depending on the ratio between the thicknesses of the snow layers. Convective mo-
tions arising in individual layers can give rise to an air convection in the other layers. Under certain conditions, an air
convection can arise in a multilayer snow cover even in the case where air convection is impossible in an individual
layer at the same temperature gradient.

The above-described features of the air convection in a snow cover consisting of several layers explain, in
many respects, the physical mechanism of the metamorphism and formation of a grain snow structure in individual
layers of a snow cover.

NOTATION

d, diameter of balls equivalent in volume to the snow crystals, cm; f, penetrability coefficient of the snow;
f1 and f», porosity coefficients of the lower and upper snow layers; g, free fall acceleration, m/secz; H, total thickness
of a snow cover, m; h; and hjy, thickness of the lower and upper snow layers, m; k, wave number, m_l; ky, minimum
critical wave number; Pr, Pri, and Prp, Prandtl numbers; Ra, Ra;, and Raj, Rayleigh numbers for a two-layer snow
cover, the lower snow layer, and the upper show layer; Rag, Rayleigh number for a homogeneous plane snow layer;
Ra,,, critical Rayleigh number for a two-layer snow cover; V(z), dimensionless amplitude of the air-velocity perturba-
tion; z, dimensionless vertical coordinate; B, thermal-expansion coefficient of the air, deg_l; Y10, Y20, equilibrium tem-
perature gradients in the snow layers, deg/m; ©(z), dimensionless amplitude of the air-temperature perturbation; 71,
X2, thermal diffusivity coefficients of the snow, mz/sec; A, decrement, sec_l; A1 and A, heat-conductivity coefficients
of the lower and upper snow layers, J/(m-sec-deg); A, heat-conductivity coefficient of the snow, J/(m-sec-deg); Vv, ki-
nematic viscosity of the air, m2/sec; pj, density of the ice, kg/m3; ps, density of the snow, kg/m3; Ps1> Ps2, density of
the snow layers, kg/m3; O, G1, and O, penetrability coefficients of the snow, mz; E_,, dimensionless parameter. Sub-
scripts: s, snow; i, ice; m, minimum.
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